TARDIS Papers and useful References

In the following a number of important works describing or using TARDIS are provided together with a collection of works outlining important techniques on which TARDIS is built.

TARDIS Code papers

Monte Carlo Radiative Transfer Works


[AbbottLucy85]D. C. Abbott and L. B. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophysical Journal, 288:679–693, January 1985. doi:10.1086/162834.
[BarnaSzalaiKromer+17]B. Barna, T. Szalai, M. Kromer, W. E. Kerzendorf, J. Vinkó, J. M. Silverman, G. H. Marion, and J. C. Wheeler. Abundance tomography of type iax sn 2011ay with tardis. Monthly Notices of the RAS, 471:4865–4877, November 2017. arXiv:1707.07848, doi:10.1093/mnras/stx1894.
[BoyleSimHachingerKerzendorf17]A. Boyle, S. A. Sim, S. Hachinger, and W. Kerzendorf. Helium in double-detonation models of type ia supernovae. Astronomy and Astrophysics, 599:A46, March 2017. arXiv:1611.05938, doi:10.1051/0004-6361/201629712.
[CarterCashwell75]L. L. Carter and E. Cashwell. Particle-transport simulation with the Monte Carlo method. Technical Report, Los Alamos Scientific Laboratory, 1975. URL: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/07/227/7227109.pdf.
[HeringervKerkwijkSimKerzendorf17]E. Heringer, M. H. van Kerkwijk, S. A. Sim, and W. E. Kerzendorf. Spectral sequences of type ia supernovae. i. connecting normal and subluminous sne ia and the presence of unburned carbon. Astrophysical Journal, 846:15, September 2017. doi:10.3847/1538-4357/aa8309.
[InserraBullaSimSmartt16]C. Inserra, M. Bulla, S. A. Sim, and S. J. Smartt. Spectropolarimetry of superluminous supernovae: insight into their geometry. Astrophysical Journal, 831:79, November 2016. arXiv:1607.02353, doi:10.3847/0004-637X/831/1/79.
[KalosWhitlock08]M. H. Kalos and P. A. Whitlock. Monte Carlo Methods: Second Revised and Enlarged Edition. Wiley-VCH Verlag, 2008.
[KerzendorfSim14]W. E. Kerzendorf and S. A. Sim. A spectral synthesis code for rapid modelling of supernovae. Monthly Notices of the RAS, 440:387–404, May 2014. arXiv:1401.5469, doi:10.1093/mnras/stu055.
[LongKnigge02]K. S. Long and C. Knigge. Modeling the Spectral Signatures of Accretion Disk Winds: A New Monte Carlo Approach. Astrophysical Journal, 579:725–740, November 2002. arXiv:arXiv:astro-ph/0208011, doi:10.1086/342879.
[Lucy99a]L. B. Lucy. Computing radiative equilibria with Monte Carlo techniques. Astronomy and Astrophysics, 344:282–288, April 1999.
[Lucy99b]L. B. Lucy. Improved Monte Carlo techniques for the spectral synthesis of supernovae. Astronomy and Astrophysics, 345:211–220, May 1999.
[Lucy02]L. B. Lucy. Monte Carlo transition probabilities. Astronomy and Astrophysics, 384:725–735, March 2002. arXiv:arXiv:astro-ph/0107377, doi:10.1051/0004-6361:20011756.
[Lucy03]L. B. Lucy. Monte Carlo transition probabilities. II. Astronomy and Astrophysics, 403:261–275, May 2003. arXiv:arXiv:astro-ph/0303202, doi:10.1051/0004-6361:20030357.
[Lucy05]L. B. Lucy. Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae. Astronomy and Astrophysics, 429:19–30, January 2005. arXiv:arXiv:astro-ph/0409249, doi:10.1051/0004-6361:20041656.
[MageeKotakSim+16]M. R. Magee, R. Kotak, S. A. Sim, M. Kromer, D. Rabinowitz, S. J. Smartt, C. Baltay, H. C. Campbell, T.-W. Chen, M. Fink, A. Gal-Yam, L. Galbany, W. Hillebrandt, C. Inserra, E. Kankare, L. Le Guillou, J. D. Lyman, K. Maguire, R. Pakmor, F. K. Röpke, A. J. Ruiter, I. R. Seitenzahl, M. Sullivan, S. Valenti, and D. R. Young. The type Iax supernova, SN 2015H. A white dwarf deflagration candidate. Astronomy and Astrophysics, 589:A89, April 2016. arXiv:1603.04728, doi:10.1051/0004-6361/201528036.
[MageeKotakSim+17]M. R. Magee, R. Kotak, S. A. Sim, D. Wright, S. J. Smartt, E. Berger, R. Chornock, R. J. Foley, D. A. Howell, N. Kaiser, E. A. Magnier, R. Wainscoat, and C. Waters. Growing evidence that sne iax are not a one-parameter family. the case of ps1-12bwh. Astronomy and Astrophysics, 601:A62, May 2017. arXiv:1701.05459, doi:10.1051/0004-6361/201629643.
[MazzaliLucy93]P. A. Mazzali and L. B. Lucy. The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. Astronomy and Astrophysics, 279:447–456, November 1993.
[Noebauer14]U. M. Noebauer. A Monte Carlo Approach to Radiation Hydrodynamics in Stellar Outflows. PhD thesis, Technische Universität München, München, 2014. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20140731-1219398-0-8.
[SimProgaMiller+10]S. A. Sim, D. Proga, L. Miller, K. S. Long, and T. J. Turner. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation. Monthly Notices of the RAS, 408:1396–1408, November 2010. arXiv:1006.3449, doi:10.1111/j.1365-2966.2010.17215.x.
[SmarttChenJerkstrand+17]S. J. Smartt, T.-W. Chen, A. Jerkstrand, M. Coughlin, E. Kankare, S. A. Sim, M. Fraser, C. Inserra, K. Maguire, K. C. Chambers, M. E. Huber, T. Krühler, G. Leloudas, M. Magee, L. J. Shingles, K. W. Smith, D. R. Young, J. Tonry, R. Kotak, A. Gal-Yam, J. D. Lyman, D. S. Homan, C. Agliozzo, J. P. Anderson, C. R. Angus, C. Ashall, C. Barbarino, F. E. Bauer, M. Berton, M. T. Botticella, M. Bulla, J. Bulger, G. Cannizzaro, Z. Cano, R. Cartier, A. Cikota, P. Clark, A. De Cia, M. Della Valle, L. Denneau, M. Dennefeld, L. Dessart, G. Dimitriadis, N. Elias-Rosa, R. E. Firth, H. Flewelling, A. Flörs, A. Franckowiak, C. Frohmaier, L. Galbany, S. González-Gaitán, J. Greiner, M. Gromadzki, A. N. Guelbenzu, C. P. Gutiérrez, A. Hamanowicz, L. Hanlon, J. Harmanen, K. E. Heintz, A. Heinze, M.-S. Hernandez, S. T. Hodgkin, I. M. Hook, L. Izzo, P. A. James, P. G. Jonker, W. E. Kerzendorf, S. Klose, Z. Kostrzewa-Rutkowska, M. Kowalski, M. Kromer, H. Kuncarayakti, A. Lawrence, T. B. Lowe, E. A. Magnier, I. Manulis, A. Martin-Carrillo, S. Mattila, O. McBrien, A. Müller, J. Nordin, D. O’Neill, F. Onori, J. T. Palmerio, A. Pastorello, F. Patat, G. Pignata, P. Podsiadlowski, M. L. Pumo, S. J. Prentice, A. Rau, A. Razza, A. Rest, T. Reynolds, R. Roy, A. J. Ruiter, K. A. Rybicki, L. Salmon, P. Schady, A. S. B. Schultz, T. Schweyer, I. R. Seitenzahl, M. Smith, J. Sollerman, B. Stalder, C. W. Stubbs, M. Sullivan, H. Szegedi, F. Taddia, S. Taubenberger, G. Terreran, B. van Soelen, J. Vos, R. J. Wainscoat, N. A. Walton, C. Waters, H. Weiland, M. Willman, P. Wiseman, D. E. Wright, Ł. Wyrzykowski, and O. Yaron. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 551:75–79, November 2017. arXiv:1710.05841, doi:10.1038/nature24303.